Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(12): e0241692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259493

RESUMO

Massive, long-lived deep-sea red tree corals (Primnoa pacifica) form a solid, layered axis comprised of calcite and gorgonin skeleton. They are abundant on the outer continental shelf and upper slope of the Northeast Pacific, providing habitat for fish and invertebrates. Yet, their large size and arborescent morphology makes them susceptible to disturbance from fishing activities. A better understanding of their growth patterns will facilitate in-situ estimates of population age structure and biomass. Here, we evaluated relationships between ages, growth rates, gross morphological characteristics, and banding patterns in 11 colonies collected from depths of ~141-335 m off the Alaskan coast. These corals ranged in age from 12 to 80 years old. They grew faster radially (0.33-0.74 mm year-1) and axially (2.41-6.39 cm year-1) than in previously measured older colonies, suggesting that growth in P. pacifica declines slowly with age, and that basal diameter and axial height eventually plateau. However, since coral morphology correlated with age in younger colonies (< century), we developed an in-situ age estimation technique for corals from the Northeast Pacific Ocean providing a non-invasive method for evaluating coral age without removing colonies from the population. Furthermore, we determined that annual bands provided the most accurate means for determining coral age in live-collected corals, relative to radiometric dating. Taken together, this work provides insight into P. pacifica growth patterns to inform coastal managers about the demographics of this ecologically important species. With this new ability to estimate the age of red tree corals in-situ, we can readily determine the age-class structure and consequently, the maturity status of thickets, using non-invasive video survey techniques when coupled with mensuration systems such as lasers or stereo-cameras. Enhanced surveys could identify which populations are most vulnerable to disturbance from human activities, and which should be highlighted for protection.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Ecossistema , Animais , Biomassa , Humanos , Oceano Pacífico
2.
Science ; 335(6072): 1058-63, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383840

RESUMO

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.


Assuntos
Organismos Aquáticos , Ecossistema , Fenômenos Geológicos , Água do Mar/química , Adaptação Biológica , Animais , Atmosfera , Dióxido de Carbono , Carbonatos/análise , Extinção Biológica , Previsões , Fósseis , Concentração de Íons de Hidrogênio , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...